International Journal of Applied and Natural Sciences (IJANS) ISSN (P): 2319-4014; ISSN (E): 2319-4022 Special Edition, Jan 2017; 19-28 © IASET International Academy of Science,
Engineering and Technology
Connecting Researchers; Nurturing Innovations

ISOLATION AND OPTIMIZATION OF CONSTITUTIVELY SYNTHESIZED INVERTASE, FROM SACCHAROMYCES CEREVISIAE MUTANT TYPE- 2 STRAIN

Saravanan Sankaran¹, Mohammed Abdul Aleem Qureshi², Sowrirajan Subbaiah³ & M. Kavitha⁴

¹ Department of Life Sciences, King Fahad University of Petroleum & Minerals, Dhahran, Kingdom of Saudi Arabia

² Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam,

Kingdom of Saudi Arabia

³Department of Chemistry, King Fahad University Of Petroleum & Minerals, Dhahran, Kingdom of Saudi Arabia ⁴Department of Pharmaceutical Technology, Vinayaka Mission University, Salem, Tamil Nadu, India

ABSTRACT

In fermentation technology, strain improvement of baker's yeast has traditionally relied on random mutagenesis, followed by screening for mutant exhibiting enhanced properties of interest. Such mutant organisms are useful in several industries. Saccharomyces cerevisiae can use sucrose as the sole source of both carbon and energy; hydrolysis of this sugar is catalyzed by the enzyme invertase is code by six SUCI to SUC5 and SUC7 un linked genes. The main objective of this work is to overcome the glucose repression of invertase by invertase constitutive mutants, and to optimize various parameters such as temperature, incubation time, and pH. This mutation may occur in any glucose repressible genes as a single or double mutation in repressor gene (s) which might cause constitutive synthesis of invertase. The maximum constitutive synthesis of invertase was obtained with aerobic conditions for growth, 2-5% of glucose concentration, pH 4-5 of medium, and incubation period at 30°C for 30 h using UV mutated type-2 strain. Using this mutant strain, natural substrates containing sucrose + glucose mixture can be used as raw materials, for the excess production of fermentation products.

KEYWORDS: Constitutive Synthesis, Invertase, Mutation, Optimization, Saccharomyces cerevisiae

Article History

Received: 22 Jul 2017 | Revised: 06 Dec 2017 | Accepted: 14 Dec 2017

www.iaset.us editor@iaset.us